

COURSE OUTLINE

1. GENERAL

SCHOOL	ECONOMIC SCIENCES		
DEPARTMENT	ECONOMICS		
LEVEL OF STUDY	Postgraduate		
COURSE UNIT CODE		SEMESTER	2 nd
COURSE TITLE	MACHINE LEARNING AND AI FOR BUSINESS		
COURSEWORK BREAKDOWN		TEACHING WEEKLY HOURS	ECTS Credits
		Lectures	2
			5
COURSE UNIT TYPE	Compulsory		
PREREQUISITES	NO		
LANGUAGE OF INSTRUCTION/EXAMS:	English		
COURSE DELIVERED TO ERASMUS STUDENTS	NO		
MODULE WEB PAGE (URL)			

2. LEARNING OUTCOMES

Learning Outcomes

Recent years have witnessed an unprecedented availability of information on social, economic, and health-related phenomena. Researchers, practitioners, and policymakers have nowadays access to huge datasets (the so-called “Big Data”) on people, companies and institutions, web and mobile devices, satellites, etc., at increasing speed and detail.

Machine learning is a relatively new approach to data analytics, which places itself in the intersection between statistics, computer science, and artificial intelligence. Its primary objective is that of *turning information into knowledge and value* by “letting the data speak”. To this purpose, machine learning limits prior assumptions on data structure, and relies on a *model-free* philosophy supporting algorithm development, computational procedures, and graphical inspection more than tight assumptions, algebraic development, and analytical solutions. Computationally unfeasible few years ago, machine learning is a product of the computer’s era, of today machines’ computing power and ability to learn, of hardware development, and continuous software upgrading.

This course is a primer to machine learning techniques using Stata, Python, and R. These software own today various packages to perform machine learning which are sometimes unknown to many users. This course fills this gap by making participants familiar with (and knowledgeable of) these ML software potential to draw knowledge and value from raw, large, and possibly noisy data. The teaching approach will be mainly based on the graphical language and intuition more than on algebra. The training will make use of instructional as well as real-world examples, and will balance evenly theory and practical sessions.

General Skills
After the course, participants are expected to have an improved understanding of Stata potential to perform machine learning, thus becoming able to master research tasks including, among others: (i) factor-importance detection, (ii) signal-from-noise extraction, (iii) correct model specification, (iv) model-free classification, both from a data-mining and a causal perspective.

3. COURSE CONTENTS

PROGRAM

1. The basics of Machine Learning

Machine Learning: definition, rational, usefulness

- Supervised vs. unsupervised learning
- Regression vs. classification problems
- Inference vs. prediction
- Sampling vs. specification error

Coping with the fundamental non-identifiability of $E(y|x)$

- Parametric vs. non-parametric models
- The trade-off between prediction accuracy and model interpretability

Goodness-of-fit measures

- Measuring the quality of fit: in-sample vs. out-of-sample prediction power
- The bias-variance trade-off and the Mean Square Error (MSE) minimization
- Training vs. test mean square error
- The information criteria approach

Machine Learning and Artificial Intelligence

The Stata/Python integration: an overview

2. Resampling and validation methods

Estimating training and test error

Validation

- The validation set approach
- Training and test mean square error

Cross-Validation

- K-fold cross-validation
- Leave-one-out cross-validation

Bootstrap

- The bootstrap algorithm
- Bootstrap vs. cross-validation for validation purposes

3. Model Selection and regularization

Model selection as a correct specification procedure

The information criteria approach

Subset Selection

- Best subset selection
- Backward stepwise selection
- Forward stepwise Selection

Shrinkage Methods

- Lasso and Ridge, and Elastic regression
- Adaptive Lasso
- Information criteria and cross validation for Lasso

Software implementation

4. Discriminant analysis and nearest-neighbor classification

The classification setting

Bayes optimal classifier and decision boundary

Misclassification error rate

Discriminant analysis

- Linear and quadratic discriminant analysis

- Naive Bayes classifier

The K-nearest neighbors classifier

Software implementation

5. Nonparametric regression

Beyond parametric models: an overview

Local, semi-global, and global approaches

Local methods

- Kernel-based regression

- Nearest-neighbor regression

Semi-global methods

- Constant step-function

- Piecewise polynomials

- Spline regression

Global methods

- Polynomial and series estimators

- Partially linear models

- Generalized additive models

Software implementation

6. Tree-based regression

Regression and classification trees

- Growing a tree via recursive binary splitting

- Optimal tree pruning via cross-validation

Tree-based ensemble methods

- Bagging, Random Forests, and Boosting

Software implementation

7. Neural networks

The neural network model

- neurons, hidden layers, and multi-outcomes

Training a neural networks

- Back-propagation via gradient descent

- Fitting with high dimensional data

- Fitting remarks

Cross-validating neural network hyperparameters

Software implementation

7. Neural networks

The neural network model

- Neurons, hidden layers, and multi-outcomes

8. ROC Curve

Introduction to Binary Classification and Performance Metrics

The Receiver Operating Characteristic (ROC) curve

- Comparing Classifiers with the ROC Curve and AUC

Software implementation

4. TEACHING METHODS - ASSESSMENT

MODE OF DELIVERY	online	
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY	Dynamic powerpoint transparencies e-class support Communication via e-mail and course discussion group	
TEACHING METHODS	<i>Method description</i>	<i>Semester Workload</i>
	lectures	26
	Individual Assignments	34
	Self study	65
	<i>Course total (24 hours of work load per credit)</i>	<i>125</i>
ASSESSMENT METHODS	I. Final examination (50%) I. Individual Assignments (50%)	

5. RESOURCES

Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani (2013), *An Introduction to Statistical Learning with Applications in R*, Springer, New York, 2013.

Cerulli, G. (2023), Fundamentals of Supervised Machine Learning: With Applications in Python, R, and Stata, Springer.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman (2008), *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*, second edition, Springer.